Energiegehalt und Einflussgrößen der Energieschätzgleichung für Grassilagen

Neuerung: Ab 2008 wurde bei der LUFA NRW eine neue Energieschätzgleichung für Grassilagen eingesetzt. Neben Rohasche und Rohprotein werden auch Rohfett, saure Detergenzienfaser (ADF_{org}) und die Gasbildung (nach Zusatz von Pansensaft) berücksichtigt. Die Einbeziehung der letzten drei Messgrößen führt zu einer besseren Einschätzung des wahren, aus Verdauungsversuchen bekannten Energiewertes.

Bisherige Erfahrungen in der Praxis 2008 und 2009: Teilweise stimmten die Ergebnisse mit den Erwartungen überein. Es gab allerdings auch Futterpartien, die trotz frühem Schnitt Anfang Mai deutlich schwächer ausgefallen sind als die bisherigen Erfahrungen im Betrieb erwarten ließen.

Fragestellung: Wie unterscheiden sich Proben mit niedrigen und hohen Energiegehalten?

Material und Methoden

Verglichen wurden die Futteranalysen von 513 Ökosilagen der Ernte 2008 und 2009, eingegangen und analysiert bei der LUFA NRW in Münster. Eingeteilt wurden die Proben nach Grünland und Kleegras getrennt nach 1., 2. und 3./4. Schnitt sowie Grünland zusätzlich für Niederungs- und Mittelgebirgslagen.

Ergebnisse

Dargestellt werden nachfolgend die Ergebnisse aus 2009. Aufgrund der Besonderheiten beim 1. Schnitt (teils viele Nasssilagen 2009) wurde auf eine Mittelwertbildung mit 2008 verzichtet. Diese Daten finden sich im letztjährigen Bericht, werden bei der Interpretation in diesem Jahr aber mit berücksichtigt.

Zwischen den Proben mit höherem und niedrigerem Energiegehalt bestehen 2009 (vergleichbar 2008) im Mittel je nach Futterart und Schnitt Unterschiede zwischen 0,3 und 0,6 MJ NEL/kg T. Erklären lassen sich die Unterschiede durch bessere Werte bei ADF und Gasbildung, meist auch durch bessere Werte bei Rohasche, Rohfett, Zucker und Rohprotein. Beim 1. und 2. Schnitt wurde das Futter meist früher geschnitten (näheres siehe beiliegende Tabelle 1).

Grünland: Auffallend bei Grünland 2009: Im Mittel werden Silagen vom 1. Schnitt mit niedrigem und hohem Energiegehalt zu gleichen Zeitpunkt geerntet sowohl im Mittelgebirge als auch in den Niederungen (Tab. 1). Hier wirkt sich aus, dass zeitweilig schwierige Erntebedingungen vor allem im frühen Zeitraum vorherrschten, vor allem zwischen dem 02. und 10. Mai. Im Mittelgebirge wurden in diesem

Zeitraum knapp 60% der Silagen als Nasssilagen eingefahren. Die Aschegehalte lagen höher und die Zuckergehalte niedriger. Trotz niedriger ADF-Werte lagen die Energiegehalte der Silagen im Mittelgebirge deshalb auch bei den früh geernteten relativ niedrig und auf gleichem Niveau wie die 1 Woche später geernteten.

Bei den Grünlandsilagen liegen die Zuckergehalte bei den energetisch besser bewerteten Silagen höher. Hieraus erklären sich auch vor allem die niedrigen ADFund hohen Gasbildungswerte. Bei allen Aufwüchsen in diesem Jahr dürften auch höhere Rohproteingehalte zu höheren Energiegehalten im Aufwuchs beigetragen haben. Als Kleeart tritt im Grünland Weißklee auf, im 1. Aufwuchs allerdings nur in Anteilen. Weißklee ailt im Gegensatz zu Rotklee aeringen nutzungselastisch. In Übereinstimmung hiermit zeigten Fütterungsversuche in Haus Riswick, dass Weißkleegrassilagen mit 6,92 MJ NEL/kg T besonders energiereich sein können.

Kleegras: Zwischen den Silagen mit höherem und niedrigerem Energiegehalt waren beim 1. und 2. Aufwuchs die Unterschiede beim Zucker- und ADF-Gehalt besonders deutlich (Tabelle 1). Niedrigere ADF-Werte deuten auf eine bessere Verdaulichkeit hin. Es ist deshalb auch nicht verwunderlich, dass bei beiden Schnitten die deutlichsten Unterschiede beim Energiegehalt von im Mittel 0,5 MJ NEL/kg T gemessen wurden. 2008 waren die Unterschiede mit 0,7 (1. Schnitt) bzw. 0,6 MJ NEL/kg (2. Schnitt) zwischen Silagen mit hohen und niedrigen Energiegehalten aber noch deutlicher.

Der Schnitttermin beim 1. Schnitt hatte nur geringen Einfluss auf den Energiegehalt (Tab. 3). Dies ist vor allem auf die weniger günstigen Erntebedingungen und hohen Aschegehalte bei frühem und die häufig niedrigen Aschegehakte bei spätem Schnitt zurück zu führen. Bei frühem Schnitttermin sind im Zeitraum zwischen dem 02. und 10. Mai 64% der Silagen mit weniger als 30% T geerntet worden.

Die unterschiedlichen Energiegehalte lassen sich teils aber auch auf die Besonderheiten der Pflanzenbestände zurück führen. Sowohl das Entwicklungsstadium der einzelnen Arten als auch der Rotkleeanteil (weitaus dominierendste Kleeart fast aller Kleegrasbestände Nordwestdeutschlands, Leitbetriebe Versuchsbericht ökologischer Landbau 2004. 1267 Bestandsaufnahmen) können dabei eine Rolle gespielt haben. So stehen weit entwickelte kleearme Bestände zumindest im 1. Aufwuchs häufiger in Verbindung mit hohen ADF-Werten sowie niedrigen Ca- und niedrigen Proteingehalten (besonders 2008: von den Proben mit ADF-Werten von über 30 % enthalten 5 von 10 weniger als 0,7 % Ca und 8 von 10 weniger als 10 % Protein und dürften damit

ausgesprochen kleearm sein, Proteingehalt ist zumindest im Sommer und Herbst zur Abschätzung des Kleeanteils weniger gut geeignet, da der Proteingehalt auch bei wenig Klee hoch sein kann). **Anmerkung zu Rotklee:** Speziell Rotklee wird auch nach der DLG-Futterwert-Tabelle bei gleichen Rohfasergehalten weniger gut bewertet als die Weidelgräser. Bei der Gesamtbewertung des Futters darf allerdings auch nicht außer acht gelassen werden, dass kleereiches Futter von Kühen lieber gefressen wird. Bei 15 – 30 % höherer Futteraufnahme nach Literaturangaben dürfte damit die insgesamt aufgenommene Energiemenge bei kleereichem Futter höher sein.

Abweichung von Orientierungswerten

Unterschiedliche Energiegehalte ergaben sich meist durch das Zusammenwirken mehrerer Parameter. In den Tabelle 1 und 2 sind die Werte fett markiert, die bei den Proben mit höherem Energiegehalt besser abgeschnitten haben.

Fast bei allen Schnitten und Regionen erklärt sich der höhere Energiegehalt durch die besseren Asche- als auch die Rohfasergehalte (seltener überm Orientierungswert) als auch Zuckergehalte. Zu feuchte Silagen treten bei den energiereichen Proben ebenfalls seltener auf. Der obere Orientierungswert von 40 % T wird aber häufiger überschritten, meist vor allem bei den energiereichen Silagen.

Empfehlung: Die Unterschiede im Energiegehalt sind auf mehrere Faktoren zurück zu führen. Positiv wirkt ein früherer Schnitt im Frühjahr und im Sommer. Ideal ist, wenn das Futter zur frühen Silierreife und nach einigen sonnigen Tagen geerntet wird. Dann ist es gut verdaulich und enthält gleichzeitig viel Zucker. Bei ungünstiger Witterung sollte die Ernte hinausgezögert werden oder es sollten Säuren eingesetzt werden (nach Rücksprache mit dem Verband).

Tabelle1: Vergleich von Gras- und Kleegrassilagen 2009 mit niedrigem und hohem Energiegehalt

(fett markiert: bei Gruppen höherer Energiegehalte häufiger positivere Einschätzung)

Standort	Futterart	Schnitt	Energie-	Schnitt-	T-Gehalt	Rohasche	Rohfett	ADF org	Zucker	Roh-	Gasbildung	Energie	Ca	n
			niveau	Termin bzw.	(% T)	(% T)	(% T)	(% T)	(% T)	Protein	(ml/200 mg T)	(MJ NEL/	(% T)	
				Wachs-						(% T)		kg T)		
				tumstage										
		1.	höher	13. Mai	40	10,6	2,9	26,1	8,7	13,1	49,3	6,14	0,65	15
			niedriger	13. Mai	40	11,8	2,8	28,8	4,5	12,6	42,4	5,55	0,55	15
Niede-	Grünland	2.	höher	42	47	9,8	2,8	28,1	7,5	14,5	44,5	5,82	0,69	9
rungen			niedriger	49	51	9,1	2,3	29,7	8,4	11,7	43,6	5,51	0,68	9
		3.+4.	höher	46	44	11,0	3,1	27,4	5,3	16,9	41,2	5,81	0,91	6
			niedriger	54	41	10,9	3,1	29,2	3,4	15,0	40,0	5,56	1,00	6
	Grünland	1.	höher	17. Mai	32	9,7	3,1	27,2	4,4	14,0	45,5	5,94	0,63	10
			niedriger	16. Mai	33	10,6	3,0	28,9	3,3	12,8	41,3	5,54	0,64	10
Mittel-		2.	höher	39	43	10,5	2,5	28,9	9,0	14,6	44,1	6,04	0,77	9
gebirge			niedriger	50	44	10,3	2,1	30,2	6,1	13,3	39,0	5,51	0,87	9
		3.+4.	höher	41	43	10,6	3,5	26,2	6,2	17,2	43,8	6,08	0,84	8
			niedriger	48	34	13,8	3,7	27,7	3,2	14,5	37,2	5,46	0,71	8
		1.	höher	12. Mai	38	10,4	3,0	25,7	8,0	13,7	49,1	6,19	0,71	33
			niedriger	16. Mai	33	10,7	3,0	28,5	3,5	13,2	43,5	5,70	0,82	33
Niede-	Kleegras	2.	höher	38	43	11,0	3,3	27,1	6,4	15,6	44,8	5,98	1,00	18
rungen			niedriger	47	42	9,9	2,8	30,2	4,4	13,6	41,4	5,49	0,95	18
		3.+4.	höher	42	38	11,8	3,7	27,1	3,0	17,9	39,9	5,85	1,07	12
			niedriger	47	42	12,5	3,2	29,4	3,1	15,6	37,8	5,44	1,05	12

Tabelle 2: Anteil an Gras- und Kleegrassilagen 2009 aus Öko-Landbau mit Abweichungen vom Orientierungswert

(fett markiert: bei Gruppen höherer Energiegehalte häufiger positivere Einschätzung)

Standort	Futterart	Schnitt	Energie-	T-Gehalt	T-	Roh-	Rohfaser	Zucker	Ca >1%	Asche, RF od.	Asche, RF od.	n
			niveau	< 30%	Gehalt	asche	> 25%	< 3%	(nur	Zucker, 2 oder	Zucker, 3	
					> 40%	> 10%			Kleegras)	3 Werte nicht	Werte nicht	
										optimal	optimal	
		1.	höher	13	40	47	40	0		13	0	15
			niedriger	13	40	80	67	33		67	20	15
Niede- rungen	Grünland	2.	höher	11	77	55	100	22		55	22	9
			niedriger	0	88	22	100	0		22	0	9
		3.+4.	höher	0	50	83	33	33		50	13	6
			niedriger	0	33	67	83	50		87	13	6
	Grünland	1.	höher	40	10	30	60	20		30	0	10
			niedriger	40	20	40	80	50		40	30	10
Mittel-		2.	höher	11	77	55	22	11		11	0	9
gebirge			niedriger	0	66	33	88	0		33	0	9
		3.+4.	höher	13	50	87	13	25		25	0	8
			niedriger	25	25	100	50	38		75	25	8
		1.	höher	9	30	58	27	15	9	18	0	33
	Kleegras		niedriger	48	21	58	48	55	16	48	9	33
Niede-		2.	höher	0	61	61	50	11	50	28	6	18
rungen			niedriger	17	44	50	83	44	39	67	17	18
		3.+4.	höher	17	42	92	33	42	58	58	17	12
			niedriger	25	58	92	83	50	33	92	42	12

Tabelle 3: Vergleich des 1. Schnittes von Gras- und Kleegrassilagen bei frühem und spätem Schnitttermin 2009

(fett markiert: bei Gruppen höherer Energiegehalte häufiger positivere Einschätzung)

Standort	Futterart	Schnitt	Schnitttermin	Datum	T-Gehalt	Rohasche	Rohfett	ADF org	Zucker	Roh-	Gasbildung	Energie	Ca	n
				Schnitttermin	(% T)	(% T)	(% T)	(% T)	(% T)	Protein	(ml/200 mg	(MJ	(%	
										(% T)	T)	NEL/	T)	
												kg T)		
Niederungen	Grünland	1.	früh	09. Mai	38	12,1	2,9	27,5	6,3	12,9	45,6	5,90	0,60	15
			spät	18. Mai	42	10,1	2,8	28,6	7,3	12,8	46,6	5,83	0,61	15
Mittelgebirge	Grünland	1.	früh	13. Mai	29	10,7	3,1	26,3	2,5	13,8	42,4	5,74	0,63	10
			spät	20. Mai	36	9,5	2,9	28,6	5,1	13,1	44,4	5,75	0,64	10
Niederungen	Kleegras	1.	früh	07. Mai	34	11,3	3,2	26,0	5,7	14,4	45,7	6,03	0,73	33
			spät	21. Mai	37	9,9	2,8	28,2	5,9	12,5	46,8	5,86	0,79	33

Tabelle 4: Anteil an Gras- und Kleegrassilagen 2009 aus Öko-Landbau mit Abweichungen vom Orientierungswert

(fett markiert: bei Gruppen höherer Energiegehalte häufiger positivere Einschätzung)

Standort	Futterart	Schnitt	Schnitttermin	T-Gehalt	T-Gehalt	Rohasche	Rohfaser	Zucker	Ca > 1%	Asche, RF od.	Asche, RF od.	n
				< 30%	> 40%	> 10%	> 25%	< 3%	(nur	Zucker, 2 oder 3	Zucker, 3 Werte	
									Kleegras)	Werte nicht	nicht optimal	
										optimal		
Niederungen	Grünland	1.	früh	13	27	87	47	33		53	20	15
			spät	13	53	47	60	0		33	0	15
Mittelgebirge	Grünland	1.	früh	60	0	50	60	60		60	30	10
			spät	20	30	20	80	10		10	0	10
Niederungen	Kleegras	1.	früh	36	24	76	18	39	6	42	3	33
			spät	21	27	39	58	30	12	27	6	33