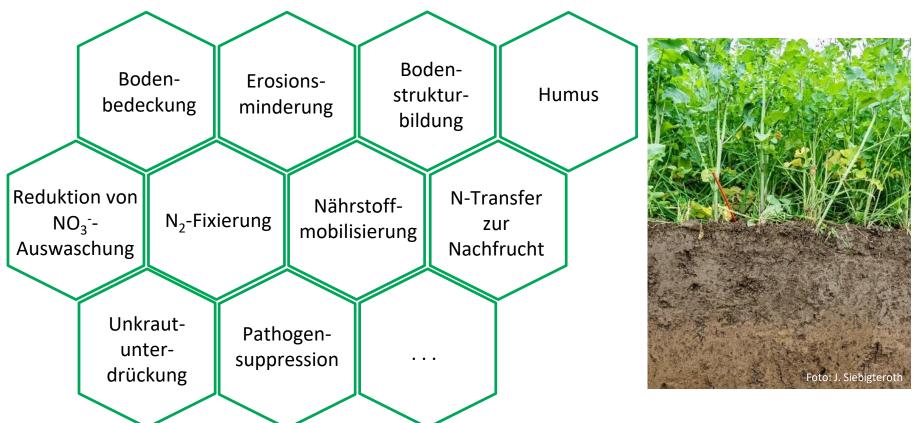


Zwischenfrüchte und Wurzelleistung

Erkenntnisse aus dem Forschungsprojekt MIKODU –

25. Öko-Kartoffeltag Roman Kemper

10. Januar 2024



Was interessiert mich denn die Wurzel?

- Zwischenfrüchte werden zwischen den Hauptkulturen angebaut
- sie erfüllen viele unterschiedliche Funktionen:

• Für viele dieser Funktionen sind die Wurzeln der Zwischenfrüchte von zentraler Bedeutung.

Wurzeln – hidden half

Warum sind die Wurzeln für Humus wichtig?

- Wurzeln bringen organische Substanz in den Boden
 - → Wurzelmasse
- Langsamerer Abbau organischer Substanz im Unterboden
 - → Tiefwurzler
 - → Nutzung großlumiger Bioporen

Kohlenstoffquelle	Humifizierungs- koeffizient
Spross	0,17
Wurzel	0,39
Rottemist	0,32
Torf	0,71
Klärschlamm	0,54

Kätterer et al. 2011 Agriculture, Ecosystems & Environment

- Rhizodeposition "hidden half of hidden half"
 - → abgestorbene Wurzelzellen
 - → Wurzelausscheidungen

Bei Grünroggen machte die Rhizodeposition mehr als 30% des unterirdischen Inputs von Kohlenstoff aus.

Austin et al. (2017) GCB Bioenergy

Was sind Bioporen? Und warum sind sie wichtig?

UNIVERSITÄT BONN

Bioporen:

- runde, vertikal verlaufende Poren im Boden
- von anözischen Regenwurmarten oder Pfahlwurzlern gebildet
- großlumige Bioporen: Ø > 2mm

Funktionen: (Kautz, 2015; Xiong et al., 2022):

- Gasaustausch, Wasserinfiltration, Unterboden-Durchwurzelung
- Wasser- und Nährstoffaufnahme aus dem Unterboden

Bioporengenese durch Anbau von Pfahlwurzlern

- möglich durch Anbau mehrjähriger Futterpflanzen (Han et al., 2015)
- für Zwischenfrüchte angenommen, aber nicht gezeigt (Zhang und Peng, 2021)
- Schaffen Zwischenfrüchten großlumige Bioporen im Unterboden?

Was haben wir im Projekt MIKODU untersucht?

- Reinsaaten und Mischungen
- Zwischenfrüchte am Wiesengut auf Auenlehm über Kies
- Futterpflanzen am Hofgut Oberfeld in Darmstadt auf Sandboden
- Sprossbiomasse- und Nährstoffaufnahme
- Wurzelmasse und Wurzellängendichte sowie Nährstoffaufnahme
- FTIR-Spektroskopie zur "Wurzelartentrennung"
- Mischungseffekte im Wurzelraum
- Bioporennutzung und Bioporengenese
- Effekte auf Bodenstruktur
- Nachfruchteffekte

Methoden

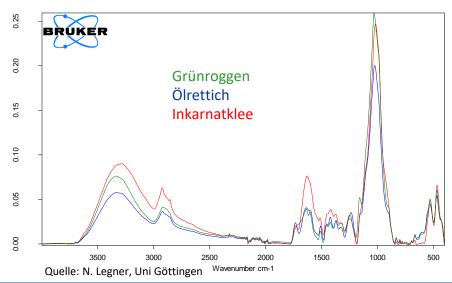


Foto: J. Siebigteroth

Foto: R. Kemper

Profilwand-Methode

Monolith-Methode

Fourier-Transform-Infrarot-Spektroskopie zur Wurzelartentrennung,

Bioporen-Fotografie

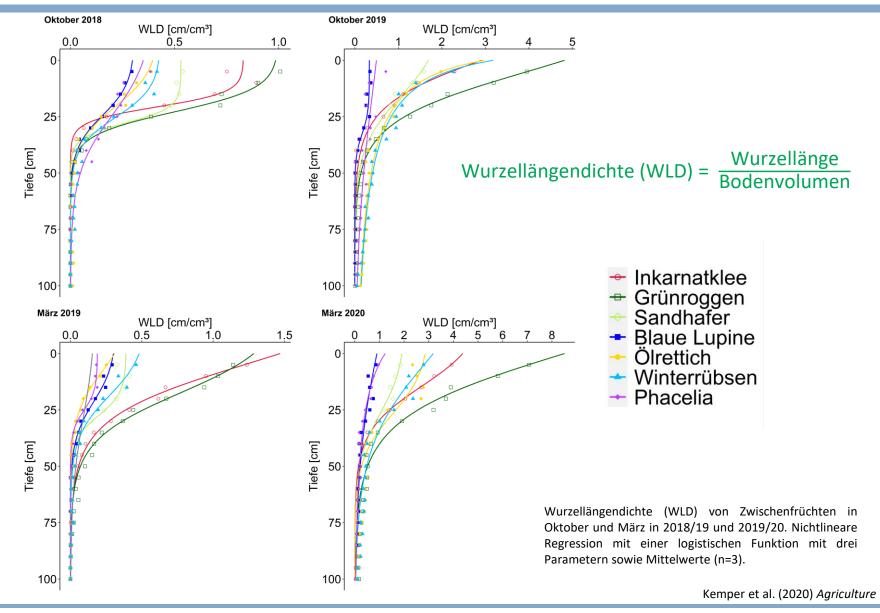
Wurzeltypen-Screening an der Profilwand

Wie unterscheiden sich die Wurzelprofile der unterschiedlichen Zwischenfrucht-Arten?

Zwischenfrucht-Arten:

Phacelia

- Grünroggen
- Ölrettich
- Sandhafer
- Winterrübsen
- Blaue Lupine
- Inkarnatklee


Feldversuche:

- 2018/19 und 2019/20
- in Hennef (Sieg)
- 840 mm, 10.3 °C
- Auenlehm

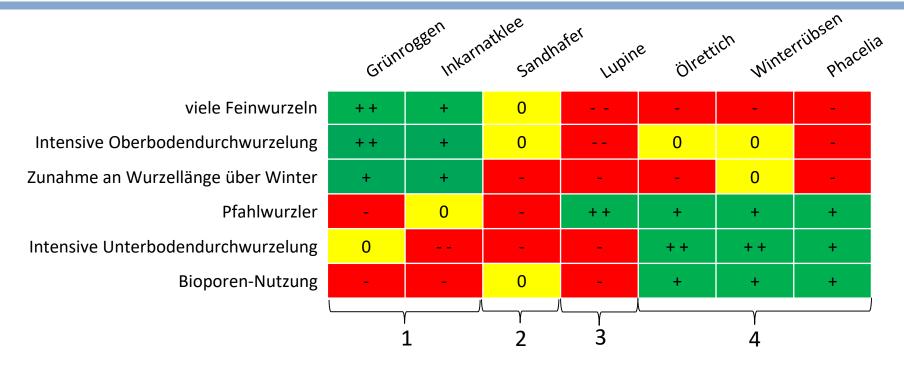
- ökologisch bewirtschaftet
- bewässert
- Saat Mitte August
- Vorfrucht Ackerbohne

WLD von Zwischenfrüchten vor und nach Winter UNIVERSITÄT BONN

Bioporennutzung von Zwischenfrüchten

Mittelwerte (n=3) des Anteils der Wurzellänge in großlumigen Bioporen im Unterboden (30-90 cm) für verschiedene Zwischenfrüchte in Oktober und März 2018/19 und 2019/20.

Termin	Zwischenfrucht	Anteil der Wurzellänge in großlumigen Bioporen (%)		า (%)	
		2018/19		2019/20	
	Inkarnatklee	0,0		4,6	b
	Grünroggen	5,2		8,4	ab
er	Sandhafer	0,0		17,5	ab
Oktober	Blaue Lupine	15,0	n.s.	2,1	b
ŏ	Ölrettich	22,2		14,8	ab
	Winterrübsen	9,7		11,3	ab
	Phacelia	4,0		31,3	a
	Inkarnatklee	2,4		6,1	
	Grünroggen	1,8		6,2	
Ņ	Sandhafer	9,6		5,6	
März	Blaue Lupine	0,0	n.s.	4,9	n.s.
2	Ölrettich	9,7		21,8	
	Winterrübsen	7,4		16,3	
	Phacelia	4,8		31,7	


(p \leq 0,05, HSD Tukey-Test)

Kemper et al. (2020) Agriculture

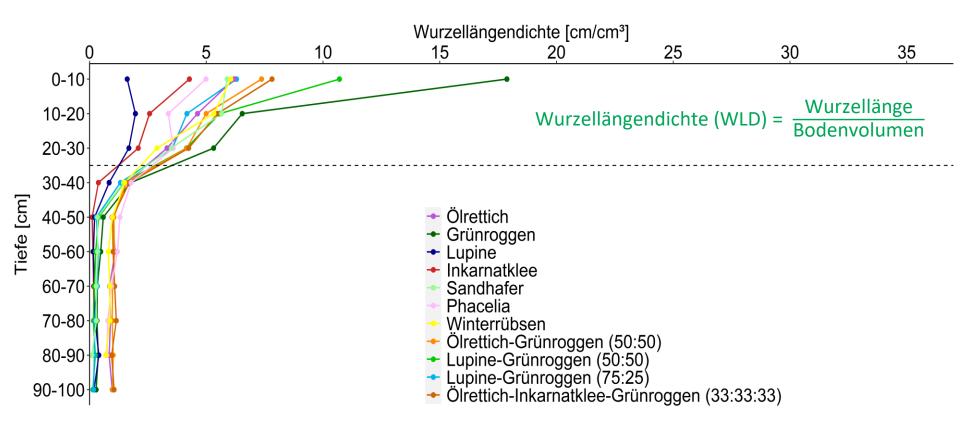
Welche Typen hat das Screening gezeigt?

Klassifizierung angepasst nach Bodner et al. 2013 und Bodner et al. 2019:

- 1. Oberboden-Typen mit vielen Feinwurzeln
- 2. Typen mit wenig verzweigten Primärwurzeln
- 3. Oberboden-Typen mit großem Wurzeldurchmesser
- 4. Wurzeldichte-Typen mit starker Verzweigung
- → Arten mit verschiedenen Wurzeltypen können als Mischungspartner interessant sein

Welche Arten wurden gemischt?

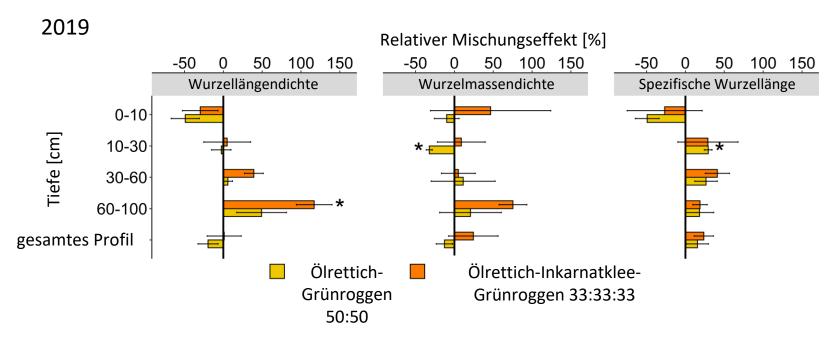
Im Screening an der Profilwand wurden als komplementär identifiziert:


Folgende Mischungen wurden getestet:

- Lupine + Grünroggen (50:50)
- Lupine + Grünroggen (75:25)

- Ölrettich + Grünroggen (50:50)
- Ölrettich + Grünroggen + Inkarnatklee (33:33:33)

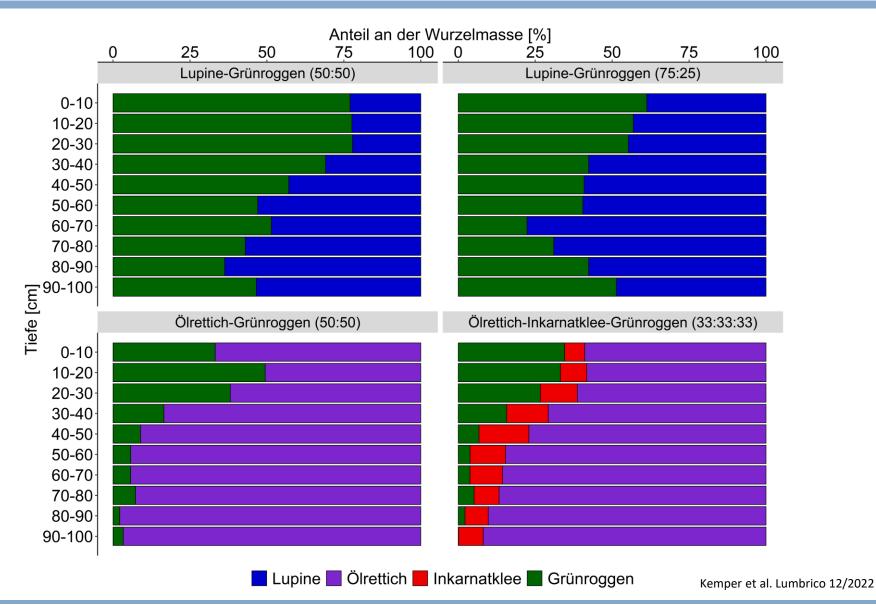
Zwischenfrüchte – Wurzellängendichte (WLD)



- insgesamt geringe WLD von Lupine
- hohe WLD im Oberboden von Grünroggen
- hohe WLD im Unterboden von Ölrettich, Phacelia, Winterrübsen und Ölrettich-Mischungen

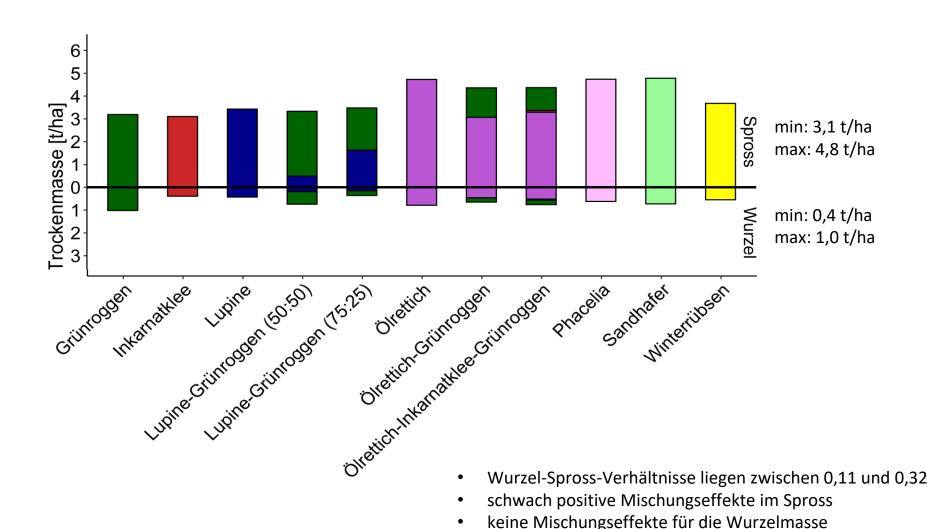
Kemper et al. Lumbrico 12/2022

Zwischenfrüchte – Wurzel-Mischungseffekte

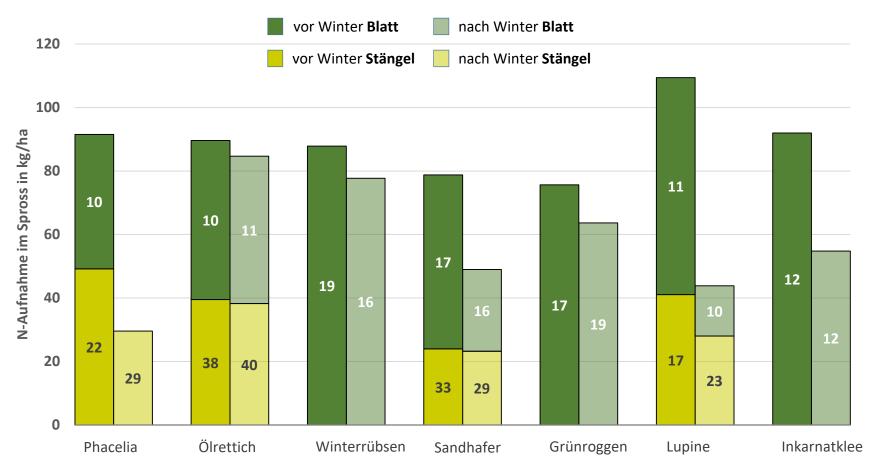


- relativer Mischungseffekt:
 - negativ: Reinsaaten "besser"
 - positiv: Mischung "besser"
- über das gesamte Bodenprofil kaum Mischungseffekte, aber starke positive Effekte im Unterboden
- höhere Wurzellängen- und -massendichte im Unterboden in Mischungen mit Ölrettich
- höhere spezifische Wurzellänge in Mischungen = dünnere Wurzeln = effizientere Nährstoffaufnahme?

Kemper et al. 2023 Plant and Soil

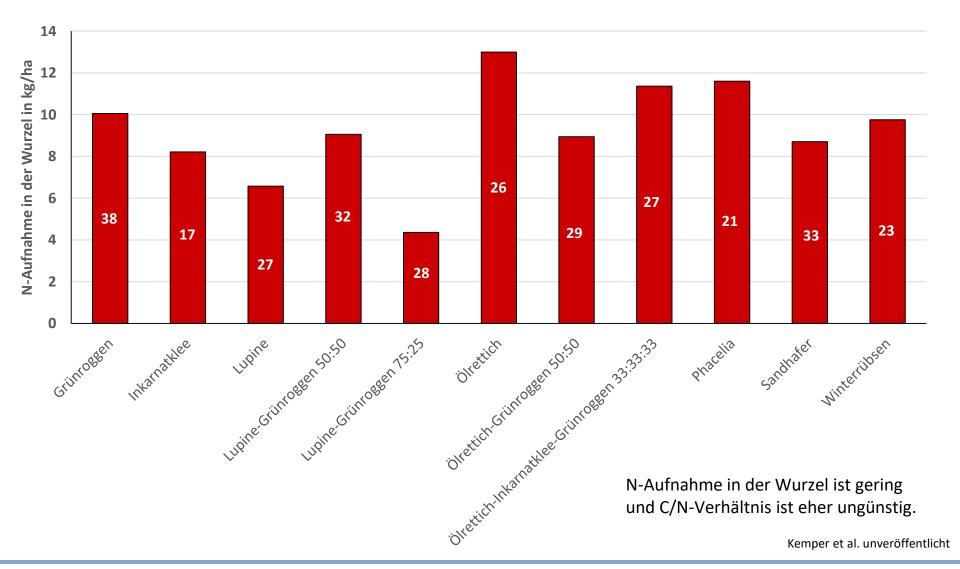

Mischungen: Wurzelmasse nach Arten getrennt

Zwischenfrüchte – Spross- und Wurzelmasse



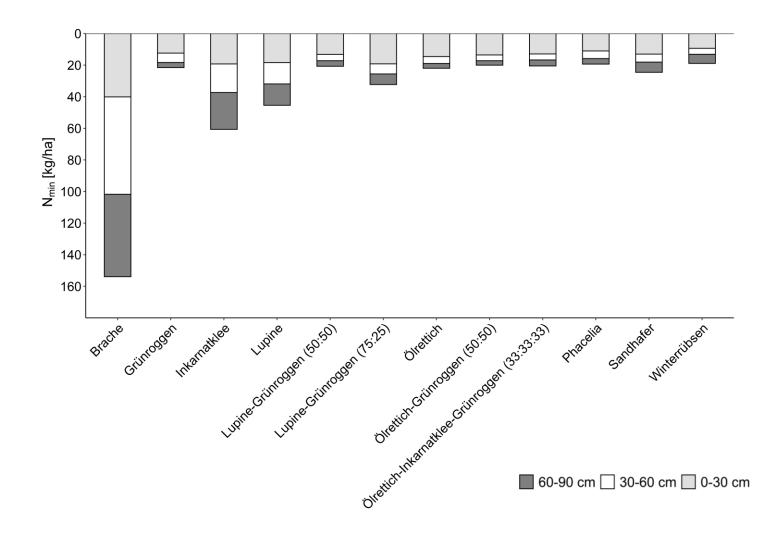
Kemper et al. Lumbrico 12/2022

N-Aufnahme & C/N-Verhältnis im Spross

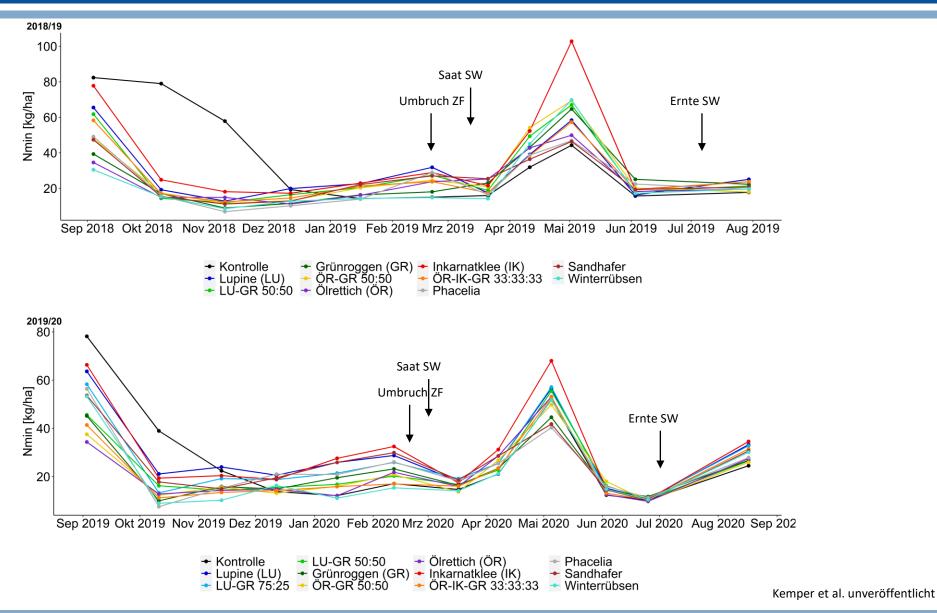

Einfluss verschiedener Zwischenfrüchte auf die Stickstoffaufnahme in den Spross (Balken) und das CN-Verhältnis (Zahlen in Balken) auf dem Versuchsbetrieb Wiesengut in Hennef vor und nach Winter 2019/20.

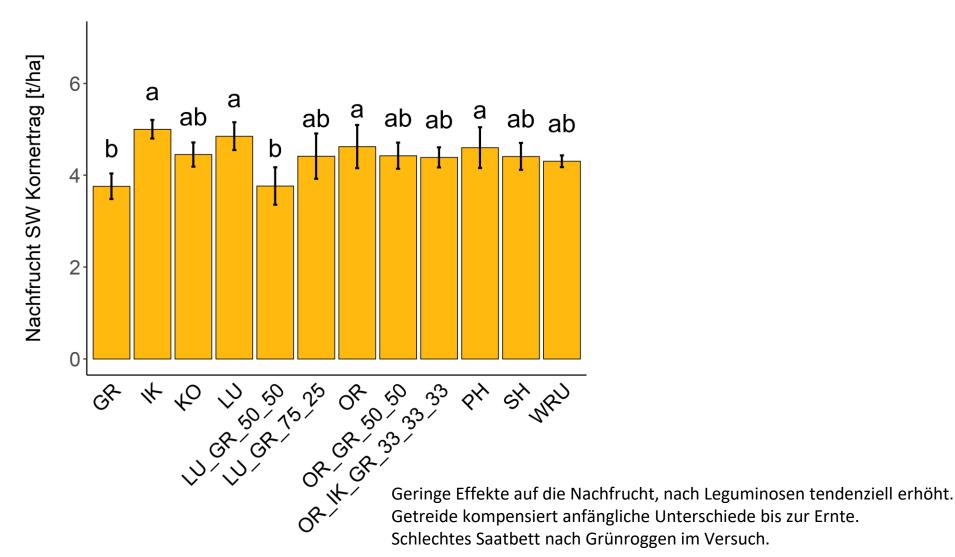
- C/N-Verhältnisse in Blatt günstiger als im Stängel
- nicht abfrierende Arten verlieren weniger N über Winter

Quelle: Christoph Stumm, Leitbetriebe Ökologischer Landbau NRW

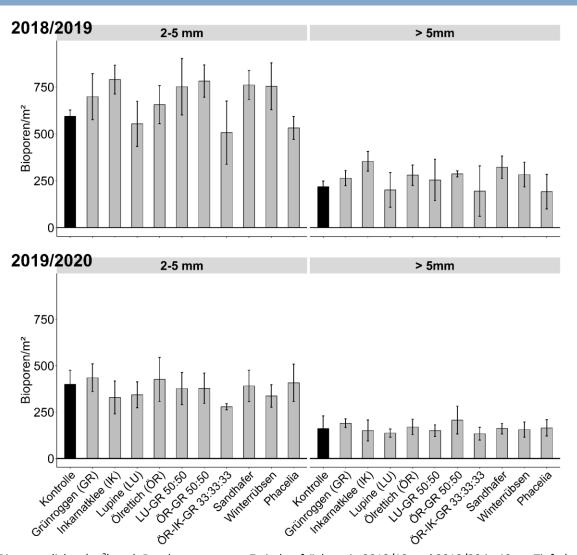

N-Aufnahme & C/N-Verhältnis in Wurzel

N_{min} unter Zwischenfrüchten im November




Kemper et al. Lumbrico 12/2022

N_{min} (0-30 cm) unter ZF und Nachfrucht SW


Effekte auf die Nachfrucht Sommerweizen

Kemper et al. unveröffentlicht

Bioporendichte unter Zwischenfrüchten

Insgesamt hohe
Bioporendichte am
Wiesengut durch
langjährig ökologische
Bewirtschaftung mit
Stallmistgaben
→ Regenwürmer!

Bioporendichte (m^{-2}) nach Durchmesser unter Zwischenfrüchten in 2018/19 und 2019/20 in 40 cm Tiefe ($p \le 0.05$, Dunnett-Test).

Kemper et al. (2023) Wissenschaftstagung Ökologischer Landbau

Wurzelstücke in 40-50 cm Tiefe

Berechnete Wurzelstücke je m² der Zwischenfrüchte in zwei Durchmesserklassen in der Bodenschicht 40-50 cm in 2018/19 und 2019/20.

Zwischenfrucht	2018/19		2019/20	
Durchmesserklasse	2-5 mm	>5 mm	2-5 mm	>5 mm
Grünroggen (GR)	12	0	6	0
Inkarnatklee (IK)	0	0	0	0
Lupine (LU)	44	0	0	0
LU-GR 50:50	13	0	0	0
Ölrettich (ÖR)	9	0	0	0
ÖR-GR 50:50	1	0	0	0 /
ÖR-IK-GR 33:33:33	0	0	0	0 /
Phacelia	1	0		/ 1
Sandhafer	0	0		f — — <mark>f</mark>
Winterrübsen	4	0		

Bioporengenese-Potential von Zwischenfrüchten ist gering. Potenzial von Lupine ist am höchsten.

Kemper et al. (2023) Wissenschaftstagung Ökologischer Landbau

Was leisten Zwischenfruchtwurzeln?

Funktion	"Oberboden- struktur/ Aggregatstabilität"	"Nährstoffaufnahme im Unterboden/ Minderung von Nitratverlagerung"	"Kohlenstoff- Speicherpotential"	"Bioporegenese- Potential"
Wurzeleigenschaft	WLD [cm cm ⁻³] in 0-30 cm Tiefe	WLD [cm cm ⁻³] in 30-90 cm Tiefe	Wurzel-Trockenmasse [t ha ⁻¹]	Wurzelstücke m ⁻² (> 2 mm) in 40-50 cm Tiefe
Inkarnatklee	2,3	0,2	0,39	0
Blaue Lupine	1,4	0,3	0,43	22
Grünroggen	7,5	0,6	1,02	9
Sandhafer	5,0	0,5	0,73	0
Ölrettich	3,8	1,1	0,79	5
Winterrübsen	4,8	1,0	0,55	4
Phacelia	4,0	1,1	0,62	1
mehrj. Kleegras	22	0,6	2,85	74
mehrj. Luzerne	12	0,9	6,04	87 - 115
mehrj. Rohrschwingel	20	0,9 - 3,2	4,27	6 - 195
mehrj. Wegwarte	9	0,6 - 2,0	3,23	53 - 76

Han et al. (2015a), Han et al. (2015b), Perkons (2018), Kemper (2024), Kemper et al. unveröffentlicht

Take Home Message

Zwischenfrucht-Wurzeln

- Pfahlwurzler nutzen bestehende Bioporen intensiv
- intensive Oberbodendurchwurzelung v.a. durch Gräser und Inkarnatklee
- Wurzellänge winterharter Arten nimmt über Winter zu
- Bioporengenese-Potential gering
- geringe Wurzelmasse und -länge im Vergleich zu mehrjährigem Futterbau
- Wurzelwachstum durch Früh-, Unter-, Mähdrusch-, Vorerntesaat oder Tiefenlockerung fördern?

N-Transfer durch Zwischenfrüchte

- winterharte Arten bilden bis zum ersten Frost weniger Sprossbiomasse
- geringerer N-Verlust über Winter bei winterharten Arten
- C/N-Verhältnis im Blatt ist für Mineralisierung günstiger als im Stängel
- kaum Ertragsunterschiede in der Getreide-Nachfrucht
- sobald Nichtleguminose in Mischung Versicherung gegen Nitratverlagerung

Take Home Message

Zwischenfrucht-Mischungen

- Mischung meist nicht von bester Einzelkomponente verschieden
- Unterschiede in der Sprossbiomasse zwischen Mischungen und Reinsaaten eher gering
- schwache Mischungskomponenten werden auch in der Wurzelmasse unterdrückt
- absolut gibt es keinen Mischungsvorteil für Wurzellänge oder Wurzelmasse
- nach Tiefe differenziert betrachtet gibt es Mischungsvorteil für Wurzellänge oder Wurzelmasse
- positive Mischungseffekte v.a. bei ausbalancierten Mischungen
- Saatanteile entscheidend (dominante Art \downarrow , schwache Art \uparrow)
- Dominanz in der Mischung hängt auch von Bedingungen im Feld ab (N_{min}, Bodenfeuchte)
- abfrierende + winterharte Partner ergänzen sich gut, v.a. im Hinblick auf die N-Dynamik
- Mischungen sind Risikoabsicherung gegen Totalausfall

Danke für die Aufmerksamkeit!

aufgrund eines Beschlusses des Deutschen Bundestages

Roman Kemper
Fachgebiet Agrarökologie und Organischer Landbau
Universität Bonn
Mail: rkemper@uni-bonn.de

Referenzen

- Austin EE, Wickings K, McDaniel MD, Robertson GP, Grandy AS (2017) Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9:1252–1263. doi:10.1111/gcbb.12428
- Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul H-P (2013) A statistical approach to root system classification. Frontiers in Plant Science 4:292. doi:10.3389/fpls.2013.00292
- Bodner G, Loiskandl W, Hartl W, Erhart E, Sobotik M (2019) Characterization of Cover Crop Rooting Types from Integration of Rhizobox Imaging and Root Atlas Information. Plants 8. doi:10.3390/plants8110514
- Han E, Kautz T, Perkons U, Lüsebrink M, Pude R, Köpke U (2015a) Quantification of soil biopore density after perennial fodder cropping. Plant and Soil 394:73–85. doi:10.1007/s11104-015-2488-3
- Han E, Kautz T, Perkons U, Uteau D, Peth S, Huang N, Horn R, Köpke U (2015b) Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biology and Fertility of Soils 51:847–856. doi:10.1007/s00374-015-1032-1
- Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment 141:184–192. doi:10.1016/j.agee.2011.02.029
- Kautz T (2015) Research on subsoil biopores and their functions in organically managed soils: A review. Renewable Agriculture and Food Systems 30:318–327. doi:10.1017/S1742170513000549
- Kemper R, Bublitz TA, Müller P, Kautz T, Döring TF, Athmann M (2020) Vertical Root Distribution of Different Cover Crops Determined with the Profile Wall Method. Agriculture 10:503. doi:10.3390/agriculture10110503
- Kemper R, Döring T, Athmann M (2022) Ein Blick auf die Wurzeln Wurzelforschung: Untersuchungen bei Zwischenfruchtmischungen. Lumbrico, 12: 23-27.
- Kemper R, Döring T, Athmann M (2023a) Schaffen Zwischenfrüchte großlumige Bioporen in Unterböden? In: Bibic, V.; Schmidtke, K. (Hrsg.) One Step Ahead einen Schritt voraus! Beiträge zur 16. Wissenschaftstagung Ökologischer Landbau, Frick (CH), 07. bis 10. März 2023, Verlag Dr. Köster, Berlin.
- Kemper R, Döring TF, Legner N, Meinen C, Athmann M (2023b) Oil radish, winter rye and crimson clover: root and shoot performance in cover crop mixtures. Plant and Soil. doi:10.1007/s11104-023-06240-y
- Kemper R, Oltmanns M, Brock C, Stumm C, Döring T, Athmann M (2024) Wurzel- und Sprosstrockenmasse von Zwischenfrüchten und Futterpflanzen Beiträge zur 17. Wissenschaftstagung Ökologischer Landbau, Gießen.
- Kemper, R (2024): Root growth of sole and mixed cover crops in organic farming. Dissertation. Universität Bonn.
- Perkons UK (2018) Bioporengenese durch homo- und allorhize Kulturpflanzen: Einfluss auf das Wurzelwachstum der Nachfrüchte. Dissertation. Universität Bonn, Bonn
- Kemper Roman, Seidel Sabine, Hadir Sofia, Schmittmann Oliver, Oltmanns Meike, Brock Christopher, Legner Nicole, Göbel Marc-Oliver, Peth Stephan (unveröffentlicht): Abschlussbericht des Verbundprojektes Fruchtfolgen für optimierte Nutzung der Bodenressourcen: Mischanbau allorhizer und homorhizer Arten zur komplementären Durchwurzelung des Ober- und Unterbodens (MIKODU)
- Xiong P, Zhang Z, Peng X (2022) Root and root-derived biopore interactions in soils: A review. Journal of Plant Nutrition and Soil Science. doi:10.1002/jpln.202200003
- Zhang Z, Peng X (2021) Bio-tillage: A new perspective for sustainable agriculture. Soil and Tillage Research 206:104844. doi:10.1016/j.still.2020.104844

Saatstärken und Sorten

Tabelle 3: Versuchsvarianten der beiden Zwischenfrucht-Versuche am Wiesengut

2018/2019	2019/2020
Kontrolle (ohne Zwischenfrucht, unkrautfrei)	Kontrolle (ohne Zwischenfrucht, unkrautfrei)
Phacelia (Sorte Beehappy (DSV) - 12 kg/ha)	Phacelia (Sorte Beehappy (DSV) - 12 kg/ha)
Ölrettich (Sorte Silentina (Petersen) - 25 kg/ha)	Ölrettich (Sorte Silentina (Petersen) - 25 kg/ha)
Ölrettich (Sorte Deeptill (DSV) - 12 kg/ha)	
Winterrübsen (Sorte Jupiter (Petersen) - 15 kg/ha)	Winterrübsen (Sorte Jupiter (Petersen) - 15 kg/ha
Sandhafer (Sorte Pratex (Petersen) - 80 kg/ha)	Sandhafer (Sorte Pratex (Petersen) - 80 kg/ha)
Grünroggen (Sorte Bonfire (DSV) - 120 kg/ha)	Grünroggen (Sorte Bonfire (DSV) - 120 kg/ha)
Blaue Lupine (Sorte Boruta (Bingenheimer) - 120 kg/ha)	Blaue Lupine (Sorte Boruta (Bingenheimer) - 120 kg/ha)
Inkarnatklee (Sorte Linakarus (DSV) - 30 kg/ha)	Inkarnatklee (Sorte Linakarus (DSV) - 30 kg/ha)
Ölrettich + Grünroggen (12,5 + 60 kg/ha)	Ölrettich + Grünroggen (12,5 + 60 kg/ha)
	Ölrettich + Inkarnatklee (6,25 + 22,5 kg/ha)
Blaue Lupine + Grünroggen (60 + 60 kg/ha)	Blaue Lupine + Grünroggen (60 + 60 kg/ha)
	Blaue Lupine + Grünroggen (90 + 30 kg/ha)
Ölrettich + Inkarnatklee + Grünroggen (8,5+ 10 + 40 kg/ha)	Ölrettich + Inkarnatklee + Grünroggen (8,5+ 10 + 40 kg/ha)
RigolTR (DSV) - 22 kg/ha	